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Abstract
Despite advances in sepsis management, it remains a major intensive-care-unit (ICU) concern. From new prospective, positive 
effects of metformin, such as anti-oxidant and anti-inflammatory properties are considered potentially beneficial properties 
for management of septic patients. This article reviewed the potential ameliorative effects of metformin in sepsis-induced 
organ failure. Information were retrieved from PubMed, Scopus, Embase, and Google Scholar. Multi-organ damage, oxidative 
stress, inflammatory cytokine stimulation, and altered circulation are hallmarks of sepsis. Metformin exerts its effect via 
adenosine monophosphate-activated protein kinase (AMPK) activation. It improves sepsis-induced organ failure by inhibiting 
the production of reactive oxygen species (ROS) and pro-inflammatory cytokines, preventing the activation of transcription 
factors related to inflammation, decreasing neutrophil accumulation/infiltration, and also maintaining mitochondrial membrane 
potential. Studies reported the safety of metformin therapeutic doses, with no evidence of lactic acidosis, in septic patients. 
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Introduction
Recently, at the 45th Congress of Society of Critical 

Care Medicine in Florida, sepsis was defined as a life-
threatening condition associated with organ damage 
as a result of dysregulated host immune response (1). 
Septic shock has been described as persistent elevation 
in lactate levels above 2 mmol/L despite adequate fluid 
resuscitation and elevation in mean arterial pressure 
to over 65 mmHg that requires administration of a 
vasopressor (2). Recent evidence suggests that people 
at risk of developing sepsis, are usually critically 
ill, elderly, and immunocompromised patients (3). 
There are other acute and chronic conditions that can 
cause systemic inflammatory response and events 
similar to those observed in sepsis, including burst 
of inflammatory mediators, hemorrhagic shock, 
pancreatitis, trauma, and ischemic conditions (4). 
To date, management of sepsis has been challenged 
due to its complex nature. Experimental studies 
have proven the possible alleviative effect of anti-
inflammatory drugs in sepsis. The protective effects 
of metformin mediated by anti-oxidative and anti-
inflammatory mechanisms, were demonstrated in 
recent studies (5-7). Such evidence made metformin 
a potential candidate for sepsis management. Lactic 
acidosis has emerged as the most concerning issue 
in metformin users, since it affects lactate clearance 
and metabolism (8). However, some studies abrogated 
of the association between therapeutic doses of 
metformin and lactic acidosis occurrence. Studies on 

metformin reported an improvement in sepsis-induced 
inflammatory and oxidative stress conditions, as well 
as improved mortality at different tested doses and in 
various models (9, 10). This article aimed at reviewing 
the ameliorative effects of metformin in sepsis-related 
organ failure and discussing the underlying molecular 
mechanisms.

Overview of sepsis

Sepsis is a lethal situation with a high mortality rate in 
intensive-care-unit (ICU) hospitalized persons (11). It is 
characterized by severe blood or tissue infection with a burst 
of inflammatory markers and subsequent mitochondrial 
dysfunction due to the presence of molecules released 
by microbes or stressed cells. Molecules released from 
these microbes stimulate inflammatory responses, which 
in turn lead to tissue damage and production of some 
mediators that can exacerbate inflammation and tissue 
damage, and eventually cause organ failure (12). These 
include inflammatory mediators such as high mobility 
box protein (HMGB1) which can serve as a classic 
damage-associated molecular pattern (DAMP) molecule 
in the late phase of sepsis. Sepsis is associated with 
risk factors such as age, delayed treatment, persistent 
infection, immune suppression, and previous illness 
(13). Polymorphism of genes encoding inflammatory 
mediators, heat shock proteins, and toll-like receptors 
(TLRs), can influence the incidence and severity of 
sepsis (14).
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Fig.1: Search strategy indicating inclusion and exclusion criteria.

Biochemical events in sepsis
Sepsis involves the release of molecules exclusively 

synthesized by microbes [lipopolysaccharides (LPS), 
peptidoglycan, and bacterial lipoproteins] recognized 
by pattern recognition receptors (CD14, TLRs) which 
send warning signals to the host, and induce stimulation 
of cytokines, chemokines, and complement system, 
and subsequent activation of the immune system 
cells neutrophils, monocytes, and macrophages (15-
17). It involves both cellular and molecular events 
which occur as a result of stimulation of inflammatory 
mediators, oxidative stress markers, apoptosis, as 
well as interference with some neurotransmitters 
and signaling pathways (Fig.1). These events lead to 
tissue injury and subsequent organ damage/failure. 
Sepsis is associated with increased production of 
inflammatory cytokines in response to the entrance 
of microorganisms into the blood (18). Sepsis is 
comprised of two inflammatory stages namely, an acute 
phase and subsequently, a late-phase characterized 
by a systemic inflammatory response syndrome 
(SIRS) and a complimentary anti-inflammatory 
response syndrome (CARS), respectively (19). The 
typical characteristic of these stages are exaggerated 
productions of pro- and anti-inflammatory cytokines 
or chemokines which lead to a cytokine storm. These 

cytokines exhibit both beneficial and deleterious 
effects as although they are produced to eliminate 
infection, their overproduction/overactivity can lead 
to immunosuppression, tissue damage, and organ 
failure (19, 20). Proinflammatory cytokines stimulate 
systemic responses while anti-inflammatory cytokines 
inhibit such responses and initiate wound healing (19). 
These early response regulators (i.e. proinflammatory 
cytokines) are implicated in SIRS, while the anti-
inflammatory mediators secreted during CARS play 
immunoregulatory roles in sepsis (20, 21). These 
hyper-inflammatory responses affect the balance 
between endogenous oxidants and antioxidants and 
cause immunosuppression which leads to tissue injury, 
cell death, and organ failure. Excessive activation of 
NF-κB stimulated the production of reactive oxygen 
species (ROS) and affected endogenous antioxidant 
activity, which in turn caused lung damage and distal 
organs apoptosis in septic mice (22). Redox imbalance 
due to production of ROS can affect respiratory 
chain activities and mitochondrial structure (23). 
These events increase oxidative stress, tissue injury, 
and organ failure by affecting blood flow of various 
organs. Increased production of ROS leads to 
vasoconstriction and subsequent decreased blood flow 
of vital organs (24). Another important parameter in 
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sepsis is accumulation of lactate which is associated 
with inactivation of pyruvate dehydrogenase (PDH) 
enzyme. Tumor necrosis factor (TNF) may be 
involved in preventing PDH activity in the skeletal 
muscles of rats with chronic abdominal sepsis (25). 
Blood or serum lactate concentration during sepsis is 
regarded as the most important indicator of morbidity 
and mortality during sepsis. Hyperlactatemia was 
shown to be associated with sepsis severity. In this 
regard, increment of lactate clearance was found to 
be associated with improved clinical outcomes and 
decreased mortality probably by resolving hypoxia. 
Several clinical trials reported the improved clinical 
outcomes in patients with sepsis and septic shock, 
following adequate lactate clearance. A 10% increase 
in lactate clearance was associated with one-score 
decrease in acute physiology and chronic health 
evaluation II (APACHE II), and an approximately 
11% decrease in mortality among the septic patients 
(26). Decreased APACHE II score, days spent in the 
ICU, and 28-day mortality in groups with 10-30% 
lactate clearances were also observed in patients with 
severe sepsis and septic shock (27). Recent findings 

using Escherichia coli-infected cells (in vitro), and 
LPS and cecal ligation and puncture (CLP)-induced 
septic mice (in vivo) revealed the role of adenosine 
monophosphate kinase (AMPK) pathway in sepsis 
severity as suppression of this pathway led to an 
increase in pyruvate kinase isozyme M2 (PKM2)-
dependent aerobic glycolysis. This increases HMGB1 
release, lactate accumulation, and mortality (28). 
Activation of NF-κB pathway that involves nitric oxide 
(NO) production was shown to be associated with 
activation of pro-apoptotic proteins signaling such as 
the Fas and Fasl which led to apoptosis in A549 human 
lung epithelial cells and mice treated with LPS (29). 
Common molecular events that occur during sepsis are 
inflammation, oxidative stress, and apoptosis which 
lead to the observed deleterious effects. Hence, agents 
that have the ability to block these effects, may be 
beneficial in sepsis management. Studies reported that 
the antioxidant, anti-inflammatory, and anti-apoptotic 
effects of metformin are mediated by blockade or 
enhancement of the involved molecular pathways; 
thus, it may affect sepsis via same mechanisms (Fig.2).

Fig.2: A summary of biochemical events occurring during sepsis.
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Metformin 
Metformin has several functions in addition to its anti-

hyperglycemic effects. Inhibition of respiratory chain 
complex in the mitochondria is a primary action of 
metformin (30). It exerts its effect by inhibiting complex 
I of the electron transport chain (ETC) which increases 
AMP/ATP ratio and subsequently induces AMPK 
activation (31). This effect was observed in perfused liver, 
skeletal muscles, endothelial cells, pancreatic beta cells, 
and neurons (32-34). AMPK plays significant roles in 
cellular responses to danger signals (35).

The protective effect of metformin is majorly mediated 
through activation of AMPK and inhibition of NF-κB 
pathway (36). It decreases mitochondrial respiration which 
renders cells less energetic, increases aerobic glycolysis, 
and reduces glucose metabolism through the citric cycle. 
Metformin reduces tumor cell growth by preventing lipid 
membrane biosynthesis in the mitochondria (37). It was 
shown that inhibition of complex I of ETC in cancer cells 
prevented oxidative phosphorylation, which in turn, decreased 
cell multiplication both in vitro and in vivo. Metformin 
lessened the activation of apoptotic cascade by inhibiting 
the permeability transition pore (PTP) opening (38). It also 
attenuated kidney injury induced by gentamicin in rats (7).

Co-administration of metformin with garlic also prevented 
gentamicin-induced kidney injury and suppressed diabetes-
induced podocyte loss in diabetic neuropathy (39, 40). 
Metformin was reported to exert potent antioxidant activity, 
especially in oxidative stress-induced damage in diabetic 
patients (5). It reduces cardiovascular-associated mortality 
and morbidity in both diabetic and non-diabetic patients 
(6). Metformin was shown to decrease blood pressure, left 
ventricular mass, and cholesterol, triglycerides, and fibrinogen 
levels in obese non-diabetic hypertensive women (41). It 
also decreased blood pressure and hyperandrogenemia in 
women with polycystic ovarian syndrome (42). Metformin 
also reduced myocardial infarct size by preventing membrane 
PTP (mPTP) opening via the phosphatidylinositol-3-
kinase (PI3K) pathway (43). Metformin prevented brain 
mitochondrial dysfunction by decreasing oxidative stress 
levels and reducing insulin resistance (44). A combination of 
metformin and insulin given to critically ill patients reduced 
the incidence of insulin resistance, adverse effects associated 
with high-dose insulin therapy, as well as inflammatory 
cytokines production (45-47).

Other animal studies reported metformin’s ability to 
promote neurogenesis, enhance spatial memory, protect 
against cerebral ischemia, and stimulate angiogenesis (48, 
49). Sepsis includes similar biochemical events; hence, 
metformin may protect against sepsis-induced organ injury 
via above-noted mechanisms. Some studies reported 
beneficial effects of metformin on sepsis. Despite these 
promising effects, metformin is still contraindicated in 
organ failure due to risk of lactic acidosis. However, some 
studies reported the safety of metformin at therapeutic 
doses with little or no incidence of lactic acidosis but 
improvement of morbidity and mortality.

The safety of metformin in sepsis
Metformin was shown to cause lactate accumulation by 

inhibiting or reducing lactate metabolism and clearance 
in the liver through induction of hypoxia or excessive 
inhibition of mitochondrial respiration (50). Metformin 
was also found to be associated with non-hypoxic lactic 
acidosis with an increased mortality rate of about 50%. 
This is the main reason for metformin contraindication 
in critically ill patients, especially in sepsis. However, 
this effect of metformin on mitochondrial respiration that 
causes lactate accumulation was reported at therapeutic 
doses. Some studies reported metformin-associated lactic 
acidosis (MALA) only in case of overdose which is rare, 
while some studies found no MALA even at very high 
doses of the drug. MALA in sepsis may not be significant 
as the benefit outweighs the risk and the usual doses 
are within the therapeutic limit. The following studies 
reported little or no aggravating effects for metformin 
in terms of sepsis-related mortality. Metformin did not 
affect survival rate in sepsis at high doses (500 mg/kg) 
in mice, which was similar to smaller doses (50 mg/kg) 
used in clinical practice (9). In another study, patients 
with suspected sepsis were recruited from the emergency 
department (ED); higher lactate levels and incidence of 
hyperlactatemia were more common in metformin users 
compared to non-users though it did not indicate poor 
prognosis (51). A clinical trial reported lower incidence 
of hospital mortality in metformin users compared to 
non-users, while lactate, bicarbonate, and blood pH levels 
were similar between the two groups (10). This inferred 
that metformin did not increase the lactate level, but 
improved mortality. Another study similarly reported that 
metformin had no significant impact on lactate levels, 
clearance, and normalization, over a 24-hour period in 
patients with severe sepsis and septic shock (52). These 
studies suggest that though high lactate concentration 
indicates poor prognosis in sepsis, metformin use may not 
increase lactate levels, which is proportional to disease 
severity or increase in mortality rate. Further studies on 
the effect of metformin on lactate are needed to clarify 
MALA incidence at therapeutic doses.

The effects of metformin on sepsis-induced organ 
failure

The biochemical events that occur in sepsis usually result 
in organ failure and death. Studies reported metformin 
induces beneficial effects against sepsis by interfering 
with inflammatory markers and other molecular processes, 
which are mainly mediated via AMPK activation. 
Metformin was reported to increase bacterial killing by 
enhancing neutrophil chemotaxis via AMPK activation. It 
promoted the chemotactic and bacterial killing ability of 
neutrophils in an LPS-induced model (53). This suggests 
that AMPK activation by metformin may prevent the 
influence of molecules released by microbes and their 
subsequent deleterious events. Some reported protective 
effects of metformin on sepsis-induced organ failure are 
presented in Table 1.
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Table 1: Protective effects of metformin on sepsis

Organ Model Mechanism References

Brain CLP Inhibition of oxidative stress and apoptosis, and increased BBB integrity. (54)

Heart LPS Suppression of TLRs, and inhibition of MPO activity and inflammatory 
responses. 

(55-58)

Lungs LPS, CLP Inhibition of inflammatory cytokines, activation of ATF-3, and enhance 
neutrophil chemotaxis, inhibition of neutrophil and macrophage infiltration, 
and suppression of TLR signaling.

(59-63)

Liver LPS Inhibition of pro-inflammatory cytokine production, decreased the 
expression of PAI-1 mRNA and PAI-1 protein, decreased MPO activity and 
tissue asymmetric dimethyarginine levels, and restored glutathione.

(64, 65)

CLP; Cecal ligation and puncture, LPS; Lipopolysaccharides, BBB; Blood brain barrier, TLR; Toll-like receptor, MPO; Myeloperoxidase, ATF; Activating 
transcription factor, and PAI-1; Plasminogen activator inhibitor type-1.

The brain 
Metformin in different brain injury models could improve 

brain function and prevent injury. The effects of metformin 
on sepsis-induced brain injury were also reported; metformin 
could enhance blood brain barrier (BBB) integrity and 
attenuate brain injury (54). Metformin improved brain 
function by preventing brain injury through increased 
expression of specialized tight junction proteins (claudins), 
decreased oxidative stress markers, and attenuated apoptosis. 
Tight junction proteins regulate the passage of molecules 
across the BBB; thus, any alteration in their concentration 
will affect the permeability leading to increased brain 
injury (54, 66). More studies on involved mechanisms and 
pathways are needed.

The heart
In the heart, the consequence of sepsis is microcirculatory 

failure, right and left ventricular dysfunction, myocardial 
infarction, and many other forms of heart failure. Metformin 
exerts its cardioprotective effects via suppression of 
TLRs. It preserved left ventricular function by reducing 
myeloperoxidase (MPO) activity and TNF alpha (TNF-α) 
level, both in the serum and heart tissue. This effect was 
observed to be mediated via AMPK activation (55). 
Metformin also inhibited local immune response in the 
isolated rat heart through AMPK and TLRs pathways 
(56). Also, metformin could protect against myocardial 
dysfunction by increasing the expression of genes 
related to cardiac metabolism, enhancement of fatty acid 
oxidation and ATP synthesis, while decreasing glucose 
transport and inflammatory responses (57). Metformin 
protected against endotoxin-induced acute myocarditis 
by inhibiting pro-inflammatory cytokines, suppressing 
the expression of MPO, and decreasing creatine kinase 
myocardial band and brain natriuretic peptide (58). 

The lungs
Metformin can reduce inflammation-induced 

endotoxemia via inhibition of TNF-α, interleukin 

1 beta (IL-1β), and HMGB1 release as well as 
suppression of MPO activity (59). Metformin was 
shown to decrease LPS-induced edema and lung 
permeability through AMPK activation (35). Its anti-
inflammatory effects were reported to be mediated 
through activating transcription factor (ATF-3) (60). 
The anti-inflammatory effects of metformin via 
inhibition of TNF-α activity was studied in an in vitro 
equine whole blood assay (61). Through induction of 
AMPK pathway, metformin protected against sepsis 
and improved survival in diabetic mice by reducing 
lung permeability and decreasing the expression of 
pro-inflammatory cytokines (67). AMPK activation 
by metformin was shown to restore and increase the 
levels of ETC complexes, diminish accumulation of the 
immunosuppressive transcriptional factor alpha (HIF-
1α), reduce cells’ tolerance to endotoxin challenge, and 
prevent the abnormal neutrophil movement caused by 
LPS (68). In the same study, metformin also improved 
innate immune ability to eliminate Pseudomonas 
aeruginosa and restore lung balance by inhibiting pro-
inflammatory cytokines in bronchioalveolar lavage 
(BAL). In another study, metformin decreased cytokine 
production, BAL protein expression, and decreased 
lung edema in LPS-treated rats; also, neutrophil 
and macrophage infiltration and MPO activity were 
prevented, while AMPK-α1 expression was promoted 
by metformin (62). Metformin decreased acute lung 
injury by suppressing TLR-4 signaling in LPS-treated 
rats (63). This effect was mediated via activation 
of AMPK which reduced LPS-induced expression 
of TLR4, levels of myeloid differentiation primary 
response protein 88 (MyD88), NF-κB, and TNFα. It 
also up-regulated the p-AMPKα/AMPKα ratio by 22% 
and reduced the congestion and inflammatory cells 
infiltration into the alveolar walls. It also decreased 
MPO activity by 37%. Recently, the anti-inflammatory 
and anti-oxidative effects of metformin on sepsis-
induced lung injury were reported (69).
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The liver
Liver injury due to sepsis was shown to be induced via 

oxidative damage, inflammatory response, and neutrophil 
infiltration. Metformin decreased the expression of 
inflammatory biomarkers and thrombosis by reducing the 
expression of hepatic plasminogen activator inhibitor type-1 
(PAI-1) mRNA and plasma PAI-1 protein, which was related 
to the inhibition of hepatic urokinase plasminogen activator 
activity and an increase in fibrin deposition in a rat model 
of endotoxic shock (64). Metformin prevented LPS-induced 
liver injury by reducing MPO activity and asymmetric 
dimethyarginine tissue level, as well as restoring the activity 
of antioxidants such as glutathione (65).

The kidney
Activation of the innate immune system can cause renal 

failure by stimulating the secretion of pro-inflammatory 
mediators which trigger the release of toxic oxygen 
radicals, protease, and cytokines, that in turn lead to 
increased vascular permeability, capillary leakage, 
and impaired oxygen extraction, with subsequent 
hypoperfusion and hypoxia (70). 

The beneficial effects of metformin on sepsis-
induced kidney injury were not reported. However, the 
importance of oxidative stress and inflammation in 
the pathophysiology of kidney injury/failure indicates 
the potential role of metformin in management of such 
conditions. The beneficial effects reported in other models 
may support this claim. Studies on the effect of metformin 
on sepsis-induced kidney injury are required.

Conclusion
Sepsis leads to multi-organ damage via inflammation 

and oxidative stress induced by production of pro-
inflammatory cytokines and ROS. This happens through 
NF-κB and other signaling pathways. Metformin, through 
AMPK activation, suppresses NF-κB signaling which 
leads to inhibition of the production of pro-inflammatory 
cytokines especially IL-1β, IL-6, and TNF-α, in different 
organs. Hence, metformin was shown to improve organ 
injury and mortality in sepsis via its action on these 
mediators. The major limitation of metformin therapy 
may be the induction of lactic acidosis (MALA) which 
may not be a matter of concern as its occurrence was 
only reported at high doses of metformin in the presence 
of other risk factors. Further experimental studies are 
required to ascertain the impact of metformin on sepsis-
induced organ failure and its safety.
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