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Abstract
Objective: Wound healing is a complex process involving the coordinated interaction of various genes and molecular 
pathways. The study aimed to uncover novel therapeutic targets, biomarkers and candidate genes for drug development 
to improve successful wound repair interventions.  
Materials and Methods: This study is a network-meta analysis study. Nine wound healing microarray datasets obtained 
from the Gene Expression Omnibus (GEO) database were used for this study. Differentially expressed genes (DEGs) 
were described using the Limma package and shared genes were used as input for weighted gene co-expression 
network analysis. The Gene Ontology analysis was performed using the EnrichR web server, and construction of a 
protein-protein interaction (PPI) network was achieved by the STRING and Cytoscape. 
Results: A total of 424 DEGs were determined. A co-expression network was constructed using 7692 shared genes 
between nine data sets, resulting in the identification of seven modules. Among these modules, those with the top 20 
genes of up and down-regulation were selected. The top down-regulated genes, including TJP1, SEC61A1, PLEK, 
ATP5B, PDIA6, PIK3R1, SRGN, SDC2, and RBBP7, and the top up-regulated genes including RPS27A, EEF1A1, 
HNRNPA1, CTNNB1, POLR2A, CFL1, CSNk1E, HSPD1, FN1, and AURKB, which can potentially serve as therapeutic 
targets were identified. The KEGG pathway analysis found that the majority of the genes are enriched in the "Wnt 
signaling pathway". 
Conclusion: In our study of nine wound healing microarray datasets, we identified DEGs and co-expressed modules 
using WGCNA. These genes are involved in important cellular processes such as transcription, translation, and post-
translational modifications. We found nine down-regulated genes and ten up-regulated genes, which could serve as 
potential therapeutic targets for further experimental validation. Targeting pathways related to protein synthesis and cell 
adhesion and migration may enhance wound healing, but additional experimental validation is needed to confirm the 
effectiveness and safety of targeted interventions.
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Introduction
Wounds are a common occurrence in everyday life and 

can result from a variety of causes, including trauma, 
surgery, and chronic conditions such as diabetes. The 
restoration of tissue integrity and function is an essential 
process of wound healing, and involves a complex 
interplay of genes, proteins, and molecular pathways (1). 
Understanding its molecular mechanisms may develop 
effective therapeutic interventions, while promoting a 
successful tissue repair.

Previous studies have demonstrated the potential of 
using omics data from non-wound healing patients to gain 
insights into the molecular mechanisms in wound healing 
and related diseases. By identifying key genes and genetic 

variants associated with chronic wounds, researchers can 
gain a better understanding of the underlying biological 
processes and potentially develop more effective 
treatments and therapies for these conditions (2). To 
gain a better understanding of wound healing processes 
and ultimately to achieve better methods of wound 
management and treatment, we need newer and better 
qualified network-based methods besides laboratory data 
analysis based on statistical tests.

By doing this study, we can view wounds as distressed 
molecular networks which arrange the tools for exploring 
and enhancing the healing process. It leads to improved 
consideration of the process complication such as (A) 
the molecular pathways linked to wound healing, (B) the 
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pathway interactions through various stages of wound 
healing, and also (C) the probability of holding the 
mechanism of regulatory interactions of wound healing. 

Material and Methods
Gene Expression Omnibus datasets

This study is a network-meta analytical study. In this 
study, we included expression microarray datasets listed in 
the Gene Expression Omnibus (GEO) of the NCBI official 
website (https://www.ncbi.nlm.nih.gov/geo/) by the end 
of December 31, 2021. To find datasets reporting the data 
on expression levels of mRNAs in the wound healing, the 
following search keywords were used: human wound healing, 
omics, transcriptomic, genomic, wound repair, regeneration, 
wound repair, and genetic variation. This search strategy 
retrieved 7500 datasets. Our inclusion criteria were human 
subjects and high throughput microarray data. Further, the 
exclusion criteria were included: i. Samples which had 
any accompanying disease, ii. Subjects who received any 
treatments for wound healing, iii. Data derived from a cell 
line, and iv. Data derived from non-blood samples.

These datasets were manually screened for having data 
on skin and oral wound healing of human subjects. Manual 
screening only short-listed 65 datasets. These 65 datasets 
underwent quality control and were checked against a set 
of inclusion and exclusion criteria. 

Finally, only 9 datasets were selected and included in 
the present study, which, in total, contained data from 
73 patients and 42 healthy controls (a sum of 115 human 
subjects). The microarray datasets were all obtained from 
the GPL570, GPL96, and GPL8300 platforms of the GEO 

with the origin of skin and oral wounds. Table 1 provides 
the details of the datasets included in this study.

Data were analyzed using the Robust Rank Aggregation 
(RRA) method (|logFC [fold-change] | >1.5 and an 
adjusted P<0.001). Rank analysis was used to determine 
the total number of differentially expressed genes 
(DEGs). The expression data in our study were quality 
corrected and quantile normalized using the Affy package 
implemented in the R programming language (version 
4.0.2) (3). The datasets were integrated at mRNA levels 
using the random effect method (REM) and then up- and 
down-regulated expressed genes were identified by the 
MetaDE package in R (version 2.2.1) (4). A principal 
component analysis was performed on the merged data 
for normalization in order to exclude heterogeneous data. 
The MetaQC tool in R (version 0.1.13) (5) was used to 
assess the studies’ quality and consistency.

Data preprocessing and differential expression 
analysis

Initially, the preprocessing step for raw data were used 
the Robust MultiArray Averaging (RMA) method in 
the Oligo package in R (version 1.38.0) (6). According 
to the Platform annotation data, the probes, that lacked 
similar gene symbols were deleted. The gene expression 
value was calculated using the average value of the probes 
that were mapped to the same gene symbol. Genes with 
a |LogFC|>1.5 and an adjusted P<0.001 were identified 
as DEGs using the Linear Models for Microarray Data 
(Limma) tool in R (7)`zR#. The input data for weighted 
gene co-expression network analysis (WGCNA) were 
shared genes from nine datasets (8).

Table 1: Characteristics of selected datasets

No. Wound healing categories GEO ID Platform Number of subjects Subjects’ group

1 Skin and oral GSE21648 Affymetrix, GPL96 15 Patients

2 Skin GSE30355 Affymetrix, GPL570 10 Patients

3 Skin GSE7890 Affymetrix, GPL570 10 Patients (with no HT) 

4 Oral GSE28914 Affymetrix, GPL570 8 Patients 

5 Skin GSE63107 Affymetrix, GPL570 30 Patients 

6 Skin GSE11919 Affymetrix, GPL570 9 Normal subjects

7 Skin GSE440 Affymetrix, GPL8300 5 Normal subjects 

8 Skin GSE26487 Affymetrix, GPL8300 10 Normal subjects

9 Skin GSE427 Affymetrix, GPL8300 18 Normal subjects

GEO; Gene Expression Omnibus, ID; Identification, and HT; Hydrocortisone treatment.
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Construction of co-expression modules of datasets by 
WGCNA 

The WGCNA using the WGCNA package in R was 
undertaken to assess the relative significance expression 
of genes and their module memberships. Co-expression 
networks were established in our study using a soft 
threshold power in order to provide different modules 
with different expression patterns. The Pearson correlation 
coefficient was then used to analyze the weighted co-
expression connections in the adjacency matrix. The 
matrix was transformed into the Topological Overlap 
Matrix (TOM) using a similar function, and then used to 
assess the co-expression associations between genes. The 
networks were constructed by grouping numerous genes 
with comparable co-expression patterns. Consequently, 
the list of modules related to up- and down-regulated 
genes and their co-expressed genes were selected.

The protein-protein interaction network
The Search Tool for the Retrieval of Interacting Genes 

(STRING) version 11.5 (http://string-db.org/) (9). The 
web server was used to   acquire the protein-protein 
interaction (PPI) network. The Cytoscape was used to 
visualize the PPI network (v3.7.2; https://cytoscape.org 
(10); The Cytoscape Consortium, San Diego, CA). This 
phase included a list of the top-ranked up and down-
regulated genes and all desired modular genes.

Functional Annotation of differentially expressed 
genes and desired modules

The EnrichR, an interactive and collaborative HTML5 
gene list enrichment analysis tool, (https://maayanlab.
cloud/Enrichr/) (2) was used to perform Gene Ontology 
(GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) function enrichment analysis on DEGs. We also 
used linear regression analysis and the Limma package in 
R software to compare patients’ group with the group of 
normal subjects. After performing this analysis and using 
Lmfit analysis (Linear Models for Microarray Data) to 
fit the model in the data for each gene, we obtained an 
estimate of the regression coefficient of each gene, which 
was performed using both of  eBayes command (11) and 
Limma package in R software (version 3.18). In the linear 
regression model, we calculated the correlation coefficient 
by the concept of |logFC|>1.5 to compare each gene in the 
two groups, and the P<0.001 was regarded as statistically 
significant. 

Results
Identification of differentially expressed genes and 
selection of the top up and down-regulated genes

The final selected data of patients and healthy controls 
from GPL96 (GSE21648), GPL570 (GSE30355, 
GSE7890, GSE28914, GSE63107, GSE11919), and 
GPL8300 (GSE440, GSE26487, GSE427) platforms were 
entered into this study. In this data, 300 up-regulated and 
124 down-regulated genes were identified (Supplementary 

1 and 2, See Supplementary Online Information at www.
celljournal.org).

The expressions of these genes were significantly 
different (|logFC| >1.5 and adjusted P<0.001) between the 
patient group and healthy control group. Subsequently, 
we selected 9 down-regulated and 11 up-regulated genes. 
Down-regulated genes included TJP1, SEC61A1, PLEK, 
ATP5B, PDIA6, PIK3R1, SRGN, SDC2, and RBBP7. 
While, up-regulated genes comprised RPS27A, EEF1A1, 
HNRNPA1, RAN, POLR2A, CTNNB1, CFL1, CSNk1E, 
HSPD1, FN1, and AURKB. To assess data distribution 
following normalization, box plots of gene expression 
data were depicted (Fig.S1, See Supplementary Online 
Information at www.celljournal.org). Separate arrays in 
the box plots exhibited similar medians of expression 
level, showing that the adjustment was performed 
correctly. The Figure S1 (See Supplementary Online 
Information at www.celljournal.org) illustrated box 
plots of selected gene expression data before and after 
normalization. 

Table 2: Details of co-expressed modules with top up- and down-
regulated genes

Co-expressed module Up or down-regulation DEGs

Turquoise Down-regulation TJP1

Down-regulation SEC61A1

Down-regulation PLEK

Down-regulation ATP5B

Down-regulation PDIA6

Down-regulation PIK3R1

Down-regulation SDC2

Down-regulation RBBp7

Up-regulation POLR2A

Up-regulation CFL1

Up-regulation CSNk1E

Up-regulation AURKB

Blue Up-regulation HNRNPA1

Up-regulation CTNNB1

Up-regulation HSPD1

Up-regulation FN1

Brown Up-regulation RPS27A

Up-regulation EEF1A1

Yellow Down-regulation SRGN

DEGs; Differentially expressed genes.

http://string-db.org/
https://cytoscape.org
https://maayanlab.cloud/Enrichr/
https://maayanlab.cloud/Enrichr/
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Weighted gene co-expression network analysis  
In this study, a co-expression network was constructed 

using 7692 shared genes between nine datasets, 
and the WGCNA package was used to construct co-
expression modules. The scale independence and mean 
connectivity of modules were shown in Figure 1A, 
B. Generating a TOM, seven modules were identified 
(Fig.1C). The desired modules were identified 
according to the merged modules.

Identification of desired modules and establishing the 
protein-protein interaction network

Among the seven resulting modules described above, 
co-expressed modules of the 20 top genes of up and 
down-regulation (|logFC| >1.5 and adjusted P<0.001) 

were identified as desired modules (Table 2). Using 
the STRING database, the predicted PPI networks of 
desired modules were created (Fig.2). A PPI network 
of top up- and down-regulated genes is shown in 
Figure 3.

 Gene Expression and KEGG enrichment analysis of 
desired modules

The targeted modules were considerably enriched 
in common GO biological processes, cellular 
compartments, and molecular functions, according 
to the GO functional enrichment analysis (P<0.05). 
The KEGG pathway analysis revealed that most 
of the enriched genes are in the "Wnt signaling 
pathway". 

Fig.1: Soft-thresholding power and gene co-expression modules. A. WGCNA scale-free fit index analysis for various soft-thresholding powers (β). The 
appropriate soft-thresholding power=12 was chosen. B. Mean connectivity analysis of various soft-thresholding powers. C. Using average hierarchical 
linkage clustering to identify gene co-expression groups. The y-axis represents co-expression distance, and the x-axis represents genes. In the horizontal 
bar immediately below the dendrogram, modules are represented by different colors, with gray referring to unassigned genes.

A

C

B
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Fig.2: PPI Network. DEGs are presented in each module connecting with lines, which represent interacting proteins. Circles and lines represent genes and 
the interaction of proteins, respectively. PPI; Protein-protein interaction and DEGs; Differentially expressed genes.

Fig.3: PPI network of top genes. Up-regulated and down-regulated genes are illustrated in yellow and blue colors, respectively. PPI; Protein-
protein interaction.
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Fig.4: GO and KEGG findings of the DEGs. The length of each bar shows the 
level of importance in that category, as determined by the p value. Also, 
the intensity of color of the bars shows the strength of association with 
that category. Lower color intensity shows stronger association. GO; Gene 
Ontology, KEGG; Kyoto Encyclopedia of Genes and Genomes, and DEGs; 
Differentially expressed genes.

The four desired modules including turquoise, blue, 
brown and yellow modules were identified for DEGs, 
resulting from our GO analysis and KEGG findings 
(Supplementary 3 and 4, See Supplementary Online 
Information at www.celljournal.org).  

Discussion
An acute wound healing is a dynamic process that 

ultimately leads to the scar development. It seems that 
there are several signaling pathways and components 
involved in this process. One of these pathways is the 
β-catenin-dependent Wnt signaling, which becomes more 
active after a skin injury and the operation of exogenous 
Wnt3a (rmWnt3a). Wnt3a promotes the maturation of 
the wound matrix, re-epithelialization, and the formation 
of a scar (12). In keratinocytes and fibroblasts, Catenin 
beta 1(β-catenin) that coding by CTNNB1 has different 
effects, as it restricts the migration of keratinocytes while 
encouraging the proliferation of fibroblasts. This suggests 

that β-catenin may either impede or improve the healing 
process (13).

Likewise, the FN1 gene is present at all phases of wound 
healing. The FN1 gene provides instructions for making 
two types of the fibronectin-1 proteins, including soluble 
plasma fibronectin-1 (pFN1) and insoluble cellular 
fibronectin-1 (cFN). The pFN1 mainly functions in the 
early stages of wound healing to aid in forming clots. 
Platelets, via increased platelet binding site expression, 
aid in assembling plasma-derived FN1 into fibrillar 
matrices. Through locally expressed FN1 assembly, 
cellular-derived FN1 governs the latter phases of a tissue 
remodeling. The FN1 protein is linked to the collagen III 
matrices during the granulation stage; the temporary FN1 
matrix is then reconstructed into the collagen I matrix, 
which is surrounded by FN1 (14). 

The Cofilin-1 (CFL1) is an actin-remodeling protein 
that binds to G- and F-actins and induces a pH-sensitive 
depolymerizing activity that regulates cell motility during 
tissue repair (15). Both form of the CFL1 protein, including 
phosphorylated and dephosphorylated, were also detected 
in platelets, with the latter quantity corresponding to the 
later phases of platelet aggregation in wound healing, that 
indicated a newly dephosphorylated CFL1, might play an 
essential role in the cytoskeletal remodeling that happens 
during platelet aggregation, a critical step in the early 
stages of wound healing (16).

Many top-up-regulated genes are strongly associated 
with one of the four stages of wound healing processes, but 
in other conditions such as cancer, they are also involved 
in proliferation. For example, RPS27a (ribosomal 
protein S27a) plays a role in ribosome synthesis and 
protein post-translational modifications. The RPS27a 
gene has been discovered to have a significant role in a 
cell proliferation through proliferation stimulation, cell 
cycle progression control, and apoptosis suppression in 
leukemia cells (17). The POLR2A gene, which encodes 
the RNA polymerase II subunit A, is strongly associated 
with cancer development. Studies have demonstrated that 
POLR2A enhances the expression of cyclin and cyclin-
dependent kinases (CDKs) at different stages of gastric 
cancer, suggesting its involvement in promoting cell cycle 
progression (18). Further studies are required to establish 
conclusive evidence and its role in wound healing.

In addition, knocking down the eEF1A1 gene, 
eukaryotic elongation factor 1A1, has a notable impact 
on reducing proliferation and activation of apoptosis in 
Jurkat cells, which may be mediated via the PI3K/Akt/
NF-B and PI3K/Akt/mTOR signaling pathways (19). 
Remarkably, CSNk1E gene has been identified as a 
significant contributor to activated β-catenin signaling in 
cancer, suggesting that it might be a viable therapeutic 
target for malignancies that contain an active β-catenin 
protein (20). The heterogeneous nuclear ribonucleoprotein 
A1 (hnRNP A1) which encoded by HNRNPA1 gene, is a 
stress granule protein that plays an important role in the 
development, proliferation, and metastatic cancer cells 
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(21). So based on the research, there is a clear relationship 
between protein biogenesis and wound healing that could 
be a potential target for therapeutic approaches.

Furthermore, in the present study, nine genes of highest 
down-regulation rate were identified, including TJP1, 
SEC61A1, PLEK, ATP5B, PDIA6, PIK3R1, SDC2, 
RBBp7, and SRGN.

The PIK3R1 gene is one of the HIF-1α pathway-
associated genes, with a greater expression rate in the 
skin and the tongue (22). In a next-generation sequencing 
(NGS) experiment, PIK3R1 was found to be one of the 
down-regulated genes in irradiated mouse skin (23). 
Radiation-induced skin fibrosis is a typical complication 
of radiotherapy in the clinical practice. In this side effect, 
FOXO3 plays a key role as one of the central genes in 
causing radiation-induced skin fibrosis. Fibrosis is linked 
to the regulation of the FOXO3 gene, which plays a role 
in the P53 pathway and is involved in essential cellular 
processes such as apoptosis, cell survival, and the 
regulation of the cell cycle. Additionally, the PIK3R1 
gene can also regulate the expression of FOXO3 (24). 

In this background, the Syndecan-2 a protein in humans 
is encoded by the SDC2 gene. SDC2, is elevated during 
fibrosis alike other SDCs. It is produced by fibroblasts 
and stimulated by transforming growth factor β1 (TGFβ1) 
and insulin-like growth factor binding protein-3 (25). 
The SCD2 is among the up-regulated genes in the 
axolotl wound healing process, along with FN1, TGFβ1, 
and LTBP3. It is implicated as a mediator in the TGFβ-
signaling pathway (26). Similarly, in SCD2 knock-down 
mice, the loss of this protein resulted in impaired retinal 
artery development and vascular branching. In addition, 
the wound healing was problematic in these mice (27).

Likewise, research has demonstrated that lower gene 
expression in SRGN leads to decreased proliferation 
and impaired wound healing ability in endothelial cells 
(28). Also, in a study of a patient with severe congenital 
neutropenia with the de novo SEC61A1 mutation, which 
was reported for the first time, problematic wound healing 
was addressed as one of the symptoms causes (29). Studies 
of inflammatory genes and inflammatory processes in 
wound healing have shown that PLEK is one of the central 
inflammatory genes and acts as a signal transducer in the 
migration of polymorphonuclear neutrophilic granulocytes 
to skin lesions which are classified as up-regulated genes 
in this process (30).

The Tjp (ZO-1) protein, plays a crucial role in wound 
healing by regulating the assembly and disassembly of 
tight junctions, as well as promoting cell migration and re-
epithelialization (31). In a study that examined expression 
of genes at 48 hours, 72 hours, and five days after the wound 
healing process, the ATP5B gene, an expression reference 
gene, showed a minor stability in comparison with other 
twelve genes (32). The Retinoblastoma Binding Protein 
7 (RBBP7), may potentially engage in the early phases 
of wound healing by serving as a chromatin remodeling 
factor, which requests additional investigation (33).

Lastly, because of the effects of genes that have not 
been studied in the wound healing process, including 
TJP1, SEC61A1, PLEK, ATP5B, PDIA6, PIK3R1, 
SRGN, SDC2, RBBp7, RPS27A, EEF1A1, HNRNPA1, 
POLR2A, CFL1, CSNk1E, HSPD1, FN1, and AURKB, 
play a crucial role in the cell proliferation by contributing 
to essential aspects of the cell cycle or the regulatory 
pathways of the process. While, a cell proliferation 
refers to the growth and division of cells, it is necessary 
for the development, maintenance and repair of tissues 
and organs in the body. Although, additional research is 
needed, these genes probably play crucial and influential 
roles in wound healing, with an elevated expression but 
fine-tuned regulation. 

Analyzing these datasets with R software revealed 424 
DEGs composed of 300 up-regulated and 124 down-
regulated genes between wound samples and normal 
skin. Several studies have shown that the Wnt gene 
family can affect wound healing. Wounding can activate 
Wnt signaling genes in several levels of wound healing. 
Moreover, Wnt signaling genes are responsible for 
different stages of skin formation, and this feature makes 
it a good target for targeting in tissue regeneration studies 
(34). 

Our GO analysis of DEGs demonstrated that a 
"regulation of cellular protein localization" is one of the 
mechanisms in wound healing. A targeted localization 
is a type of regulation that is common in eukaryotes. 
It is possible for cells to achieve rapid changes in the 
function of local proteins by particularly redirecting the 
distribution of a number of existing proteins. Eukaryotic 
cells have developed sophisticated targeting mechanisms 
to ensure that proteins are delivered to the correct cellular 
location. Indeed, essential stages such as the proliferation 
phase, the supply of protein sources is a priority of 
wound healing, and any disruption in this process will 
lead to disruption of it. The enrichment of DEGs in terms 
such as "positive regulation of telomere maintenance 
via telomerase" and “positive regulation of telomere 
maintenance via the telomere lengthening” suggests that 
any process that stimulates or increases the frequency and 
extent of the addition of telomeric repeats by telomerase 
is crucial for effective wound healing. In this aspect, mice 
with dangerously short telomeres exhibit difficulties with 
highly proliferative tissue, such as poor wound healing, 
inflammatory skin lesions, early hair loss, and early hair 
graying (35). GO and KEGG analyses of up- and down-
regulated gene expression showed that the wound healing 
mechanism is a multidimensional process that comprises 
multiple signaling pathways and important molecular 
mechanisms. 

Bioinformatics analysis indicated that these genes and 
pathways could be involved in wound healing processes 
in several ways. According to GO analysis, the main 
enrichments of turquoise module related to biological 
processes include "positive regulation of transcription, 
DNA-templated", "positive regulation of transcription 
by RNA polymerase II", "cellular protein modification 
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process", "mRNA processing" and "positive regulation 
of nucleic acid-templated transcription" each of which, 
except for the cellular protein modification process, is 
somehow related to the transcription process. It is also 
interesting to note that the blue module enrichment 
analysis, which is also co-expressed with the majority 
of up-regulated genes, showed a high overlap in the 
enrichment of these modular genes with the turquoise 
module enrichment analysis closely related to the 
transcription process. During wound healing, several 
transcription factors coordinately regulate target genes, 
which vary over time (36), enabling the integration of 
external stimuli to provide the necessary physiological 
response. The capacity of numerous transcription factors 
to bind to these regulatory regions in distinct cell types 
or respond to stimuli is frequently determined by pre-
existing genome-wide chromatin accessibility. 

Interestingly, the enrichment analysis of brown module 
genes suggests that these genes are involved in aspects of the 
translation process. The most significant pathway related 
to this module includes "SRP-dependent co-translational 
protein targeting to membrane". The targeting of proteins 
to membranes during translation is dependent on two key 
elements, including the signal-recognition particle (SRP) 
and the SRP receptor. The SRP is a cytosolic particle 
that transitory binds to the endoplasmic reticulum signal 
sequence, the large ribosomal unit, and the SRP receptor 
in the ER membrane. However, the role of SRPs in the 
wound healing procedure is closely related to CELF1, 
an RNA-binding protein gene, that is responsible for 
regulating SRPs. When CELF1 is depleted in myoblast 
cells, the wound healing process is disrupted by altering 
the regulation of SRPs. Comparable abnormalities in a 
wound healing are found when an SRP subunit imbalance 
is created by an over-expression of SRP68, which may be 
a limiting factor in the assembly of functional SRP (37).

After the transcription and translation process, the 
enrichment of the cellular protein modification process 
introduces a precise concept. This concept denotes 
the covalent modification of one or more amino acids 
in proteins, peptides, and nascent polypeptides (co-
translational and post-translational modifications) 
occurring at the individual cell level. This process is 
essential in developing tissue specificity for wound 
healing (38). On the other hand, this protein modification 
is one of the processes that affect inflammation, which 
is one of the four main stages of the wound healing 
process. The post-translational modification (PTM) of the 
constituents of the inflammatory pathway, for instance 
Toll-like receptors (TLR) pathways, RIG-I-like receptor 
(RLR) pathways, NOD-like receptor (NLR) pathways, 
intracellular DNA sensors, intracellular RNA sensors, and 
inflammasomes, is critical in the control of these signaling 
pathways (39). The primary types of a PTM include 
ubiquitination, phosphorylation, polyubiquitination, 
methylation, and acetylation, and also, they each serve a 
particular function in signaling control. A PTM effects a 
range from the production of pro-inflammatory molecules 

to the interaction of adapters and receptors, as well as cell 
translocation in response to infectious or other damaging 
agents. One of the main problems disrupting the wound 
healing process is chronic inflammation. Meanwhile, 
studies have been conducted on other complications that 
have been dedicated to down-regulated genes and their 
effects on inflammatory processes and state that down-
regulated genes can affect inflammation (40).

Conclusion
In our analysis of nine wound healing microarray 

datasets, we identified up- and down-regulated genes 
and co-expressed modules using WGCNA. DEGs play 
a role in crucial cellular processes such as transcription, 
translation, and post-translational modifications. 
Specifically, we found nine down-regulated genes, 
including TJP1, SEC61A1, PLEK, ATP5B, PDIA6, 
PIK3R1, SRGN, SDC2, and RBBp7, as well as ten up-
regulated genes: RPS27A, EEF1A1, HNRNPA1, CTNNB1, 
POLR2A, CFL1, CSNk1E, HSPD1, FN1, and AURKB. 
These discoveries offer valuable insights and potential 
therapeutic targets for further experimental validation. 
Targeting pathways related to protein synthesis may 
enhance cellular activity during wound healing, while 
interventions aimed at promoting proper cell adhesion 
and migration could facilitate efficient wound closure. 
However, additional experimental validation is necessary 
to confirm the efficacy and safety of any targeted 
interventions.
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