Neuroprotective Properties of Melissa Officinalis L. Extract Against Ecstasy-Induced Neurotoxicity

(Pages: 25-30)
Gholamreza Hassanzadeh, Ph.D., 1Parichehr Pasbakhsh, Ph.D., 1Mohammad Akbari, Ph.D., 1Saeed Shokri, Ph.D., 1Mohammadhosein Ghahremani, Ph.D., 2Gholamreza Amin, Ph.D., 3Iraj Kashani, Ph.D., 1Abolfazl Azami Tameh, Ph.D., 4,*
1. Anatomy Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
2. Toxicology - Pharmacology Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
3. Herbal Plants Department, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
4. Anatomy Department, Anatomical Sciences Research Center, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
1. Anatomy Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
2. Toxicology - Pharmacology Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
3. Herbal Plants Department, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
4. Anatomy Department, Anatomical Sciences Research Center, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
* Corresponding Address: Anatomy Department Anatomical Sciences Research Center School of Medicine Kashan University of Medical Sciences KashanIran Email:azami_ab@kaums.ac.ir
Any use, distribution, reproduction or abstract of this publication in any medium, with the exception of commercial purposes, is permitted provided the original work is properly cited This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Hassanzadeh Gholamreza, Pasbakhsh Parichehr, Akbari Mohammad, Shokri Saeed, Ghahremani Mohammadhosein, Amin Gholamreza, Kashani Iraj, Azami Tameh Abolfazl. Neuroprotective Properties of Melissa Officinalis L. Extract Against Ecstasy-Induced Neurotoxicity. Cell J. 2011; 13(1): 25-30.

Abstract

Objective:

The aim of the present study was to investigate the neuroprotective effects of Melissa officinalis, a major antioxidant plant, against neuron toxicity in hippocampal primary culture induced by 3,4-methylenedioxymethamphetamine (MDMA) or ecstasy, one of the most abused drugs, which causes neurotoxicity.

Materials and Methods:

3-(4,5-dimethyl-2 thiazoyl)-2,5-diphenyl-tetrazolium bromide (MTT) assay was used to assess mitochondrial activity, reflecting cell survival. Caspase-3 activity assay and Hoechst / propiedium iodide (PI) staining were done to show apoptotic cell death.

Results:

A high dose of ecstasy caused profound mitochondrial dysfunction, around 40% less than the control value, and increased apoptotic neuronal death to around 35% more than the control value in hippocampal neuronal culture. Co-treatment with Melissa officinalis significantly reversed these damages to around 15% and 20% respectively of the MDMA alone group, and provided protection against MDMA-induced mitochondrial dysfunction and apoptosis in neurons.

Conclusion:

Melissa officinalis has revealed neuroprotective effects against apoptosis induced by MDMA in the primary neurons of hippocampal culture, which could be due to its free radical scavenging properties and monoamine oxidase (MAO) inhibitory effects.