Histopathological Effects of Single Dose Treatment of Diazinon on Testes Structure in Rat

Seyed Gholam Ali Jorsaraei, Ph.D.1*, Alireza Firoozjaee, M.D.2, Yousofreza Yousofnia Pasha, M.D.1, Eisa Tahmasbpoor Marzony, M.Sc.3, Ebrahim Sarabi, M.D.4

1. Fatemeh Zahra Infertility and Health Reproductive Research Center, Babol University of Medical sciences, Babol, Iran
2. Pathology Department, Babol University of Medical Science, Babol, Iran
3. Biology Department, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran
4. Babol University of Medical Science, Babol, Iran

* Corresponding Address: P.O.Box: 4717641367, Fatemeh Zahra Infertility and Health Reproductive Research Center, Babol University of Medical sciences, Babol, Iran
Email: alijorsara@yahoo.com

Received: 11/May/2009, Accepted: 9/Jun/2009

Abstract

Objective: Diazinon (DNZ) is an organophosphate synthetic insecticide widely used in agriculture. DNZ has been observed to cause many changes, such as alterations in androgenic hormones. In the present study, the effect of DNZ treatment on the structure of the testes and spermatogenesis in young adult Albino rats was evaluated.

Materials and Methods: Adult rats were randomly divided into three groups including: controls (n=6), DNZ-treatment group A (n=6) and DNZ-treatment group B (n=6). Commercial DNZ was injected intraperitoneally in a single dose (A=25 mg/kg and B=2.5mg/kg), corresponding to LD50. Thirty five days after injection, animals were sacrificed for morphological and histological examinations.

Results: There was a significant reduction in seminiferous tubule size in group A in comparison with both controls and group B (p<0.001). The number of spermatocytes, Leydig and germinal cells were significantly decreased (p<0.001). These differences were not significant between the controls and group B; however, the number of spermatocytes in group B was significantly lower than in the controls (p<0.01).

Conclusion: This study revealed that the reproductive function of adult rats and spermatogenesis are sensitive to DNZ treatment. In addition, the effect of DNZ on morphological parameters was significantly dose dependent. Further study of the control DNZ and the actual mechanism whereby it exerts toxic effects on male infertility is required.

Keywords: Rats, Testes, Diazinon, Spermatogenesis

Introduction

The use of pesticides in agriculture for crop protection and pest control has been associated with environmental contamination and human health problems worldwide (1, 2). Several studies have suggested that the quality of human semen has declined over past decades and some have associated this with occupational exposure to pesticides (3, 4). However, although published studies have reported an association between pesticide exposure and male reproduction (5-8), the actual adverse role of pesticides on male reproductive function has been a matter of debate. Hence, the effect of pesticides on human reproduction remains controversial and in many studies growing interest has been focused on the wide family of pesticides (4).

Nowadays, contact with organophosphorus pesticides (OP) is an important health problem for agricultural workers (1). Although rapidly metabolized, they are highly toxic for insects and mammals. DNZ is an organophosphate pesticide (OP) widely used in agricultural practice throughout the world to control flies, lice, and insect pests of ornamental plants and food crops (9). There have been increasing concerns about the effects of DNZ in human and experimental animals. It inhibits acetylcholinesterase activity and other organic functions (10, 11). Some researchers have shown that DNZ leads to alterations in blood factors, plasma testosterone and glucose levels in male rats (12, 13). Nevertheless, the toxic effect of DNZ on male reproductive function is not well known. Some studies have indicated that DNZ has the capacity to disrupt reproductive function in animals (14-17). Conversely, others studies have reported the pathological effects of DNZ on human reproductive function with decreased libido.
Effect of Diazinon on Rat Testes Structure

after percutaneous treatment and significantly decreased androgenic hormone level (18). Since the negative effect of DZN on male reproductive function remains controversial, in the present study we hypothesized that DZN has a detrimental effect on rat testes structure and can be a risk factor for deficient spermatogenesis. The number of spermatocytes, Leydig and germinal cells, and seminiferous tubule size were analyzed for an appraisal of spermatogenesis.

Materials and Methods

Animals and materials
Eighteen Albino male rats, 70-80 days of age, were obtained from the Pastor Institute (Experimental Animal Center, Tehran, Iran). The rats were housed singly in a room with an ambient temperature of 20°C and a 12:12 light/dark cycle. Diazinon [O,O-diethyl O (2-isopropyl-6-methyl-4-pyridinyl) phosphorothioate, 60% pure, boiling point 83-84°C, denaturation point 120°C and specific gravity of 1.116-1.118] was provided from international agricultural chemistry.

Treatment with DZN
On the morning of day 1, adult rats were randomly divided into two groups including: controls (n=6) and DZN-treatment groups (n=12). The DZN-treatment groups were divided into two subgroups A (n=6) and B (n=6), according to dosage levels. On the afternoon of day 1, the animals were intraperitoneally (ip) injected with a single dose of DZN (25 mg/kg for group A and 2.5 mg/kg for group B). The controls received the same volume of deionized water. All animal-related protocols were approved by the Institutional Animal Care and Use Committee (Babol University of Medical Sciences-Iran).

Tissue processing and morphological observation
On day 35, animals were sacrificed for morphological and histological examinations. Testes were removed and fixed in 10% formalin for at least 48h. Tissue fragments were dehydrated in graded series of ethanol, embedded in paraffin and sectioned using an automatic microtome (Designed by ERNST Leitz WELZLAR, model feitz 1512) at 5 mm thickness. For histological processing, the sectioned tissues were stained with hematoxylin-eosin and examined for morphological and histological parameters (including: germinal cell, Leydig cell and spermatocyte (primary & secondary) counts and seminiferous tubule diameters) by light microscopy. The numbers of germ cells, spermatocytes and Leydig cells were measured using a stage micrometer calibrated with an eyepiece micrometer. The seminiferous tubule diameters (STD) were measured using an eyepiece graticule that consisting conversions table bound to microscope. For each sample, 400 tubules measured.

Statistical analysis
Data are reported as means ± SD. An independent t test was used to compare means between the 2 groups (DZN treated group vs control group). A probability of less than 0.05 was considered as significant. Data were analyzed using SPSS, version 11.5 (SPSS Inc, Chicago, Ill) (FAQ).

Results
Group A showed a significant decrease in the numbers of germinal (p<0.001), Lydig (p<0.001) and spermatocyte (primary & secondary) cells (p<0.01) when compared to the controls. These differences were not significant between controls and group B, however, the numbers of spermatocytes in group B were significantly lower than in the control group (Table 1; p<0.01). The numbers of germinal cells, Lydig cells and spermatocytes in group A were significantly lower than those in group B [(7.34 vs. 9.84; p<0.001); (8.52 vs. 10.97; p<0.001); (41.39 vs. 46.11; p<0.01)]. The diameters of seminiferous tubules were smaller in groups A and B, but a significant difference was seen only in group A compared to the control group (p<0.01, Table 1). The structures of the seminiferous tubules in DZN-treatment groups were pathologically damaged (Fig 1B, C) in comparison to the control group (Fig 1A).

Table 1: Comparison of histological parameters in all groups after exposure to DZN

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Control</th>
<th>Group A</th>
<th>Group B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Germinal cell count</td>
<td>9.84 ± 0.64</td>
<td>7.34 ± 0.87*</td>
<td>9.56 ± 0.86</td>
</tr>
<tr>
<td>Lydig cell count</td>
<td>10.97 ± 1.2</td>
<td>8.52 ± 0.82*</td>
<td>10.31 ± 0.92</td>
</tr>
<tr>
<td>Primary and secondary spermatocytes</td>
<td>46.11 ± 2.58</td>
<td>41.39 ± 2.9*</td>
<td>44.78 ± 2.74**</td>
</tr>
<tr>
<td>Seminiferous tubule diameters (μm)</td>
<td>4.85 ± 0.36</td>
<td>3.98 ± 0.47**</td>
<td>4.56 ± 0.33</td>
</tr>
</tbody>
</table>

Results are presented as Mean ± SD *p<0.001; **p<0.01 , ***p<0.001
Discussion

Reproductive abnormalities caused by organophosphate (OP) have been observed in many vertebrates, such as inhibition of spermatogenesis in fish and mice (15, 19, 20). Alteration of germinal cell DNA, seminiferous epithelium and low quality of sperm have been reported previously (4, 8, 14, 19, 21-26). Alahyary et al. (12) have shown that blood glucose and testosterone levels were increased in a DZN treated group compared with a control group, moreover the number of red blood cells (RBC) in the DZN group was significantly decreased in comparison with the controls. Dikshith et al (27) observed mild structural and functional changes in rat testes after a single ip administration of DZN. Dutta and Meijer (15) investigated the toxic effects of DZN on the structure of the testis of bluegill fish. They found a significant change in the germ cells and seminiferous tubule diameters (15). In the present study we found that DZN had a significant effect on the structure of rat testes. There was a significant reduction in both seminiferous tubule size and germinal cell count in the DZN treated groups, especially group A. As germ cells are the essential first step in the process of spermatogenesis, a reduction in their count may hinder the production of viable spermatozoa (15). Contreras et al. (28) have shown that the number of Leydig cells and steroidogenesis are acutely and deeply damaged by OP injection in mice. In our study the number of Leydig cells was significantly decreased by DZN treatment. Testicular Leydig cells are the main site of testosterone synthesis (28). This steroidal hormone plays a key role in the maintenance of spermatogenesis, male sex characteristics and fertility (28). As a consequence of impaired Leydig cell activity, male infertility may result (28). Some studies have shown that a decreased testicular Leydig cell count is associated with decreased testosterone production, which may result in spermatogenic deficiencies (15, 18). According to this research and the present study, DZN has toxic effects on male reproduction. In our study the toxic effect of DZN on rat testes in group A was significantly higher than that in group B. These data suggest that the toxic effects of DZN on rat testes are dose dependent. Although this reproductive dysfunction is typically characterized by disruptions in spermatogenesis and loss of fertility, the actual mechanisms involved in DZN-induced infertility remain unclear. Kurodak et al. (29) explained that DZN led to cell injury by mitotic toxicity, chromatin destruction and DNA disturbances. Some research has shown decreased testosterone production by Leydig cells in DZN treated groups to be one of these mechanisms (18, 28, 30). The Leydig cells produce the testosterone needed in the seminiferous tubules to induce the differentiation of spermatogonia to spermatozoa (28). Because testicular Leydig cells play a critical role in male reproductive function, alterations in the Leydig cells could be due to many different pathological or experimental situations associated with spermatogenesis deficiency (31, 32).

Reactive oxygen species (ROS) caused by OP may be involved in the toxicity of various pesticides (32). Increased ROS may decrease the effective concentration of antioxidant, increasing the harmful effects of ROS to reproductive tissue (3). Sutcu et al. (33) have shown that DZN treatment caused an increase in lipid peroxidation (LPO) in rat erythrocytes. Because spermatozoa have large quantities of polyunsaturated fatty acids (PUFA) in their plasma membranes and their cytoplasm contains low concentrations of scavenging antioxidants (3), a causal relationship is suspected. Thus, it is hypothesized that oxidative damage induced by DZN may be one of these mechanisms which merit future study.

Conclusion

Our results suggested an adverse effect of DZN on histomorphological parameters and spermatogenesis of rat testes. The toxic effect of DZN on rat testes is dose dependent. Although further research is needed to clarify and improve this result in relation to the complex mechanisms underlying reproductive dysfunction caused by OPs.
to human reproduction, couples attempting pregnancy should be individually counseled regarding any potentially harmful occupational exposures.

Acknowledgments
The authors thank Dr. Ali Akbar Moghaddamnia, Dr. Reza Alizadeh, and Mr Faraji, Mr Jafari and Mr Musavi for their help. There is no conflict of interest in this study.

References